276°
Posted 20 hours ago

My Weigh T3 400 Triton T3 400 Gram x 0.01 Digital Pocket Scale Black

£9.9£99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

As you can see, the C7b9#11 chord has the notes C E F#(Gb) Bb and Db. There is also a G in this chord, but we don’t usually have enough fingers to play it, so it gets left out. One of the largest cryovolcanic features found on Triton is Leviathan Patera, [57] a caldera-like feature roughly 100km in diameter seen near the equator. Surrounding this caldera is a volcanic dome that stretches for roughly 2,000km along its longest axis, indicating that Leviathan is the second largest volcano in the solar system by area, after Alba Mons. This feature is also connected to two enormous cryolava lakes seen northwest of the caldera. Because the cryolava on Triton is believed to be primarily water ice with some ammonia, these lakes would qualify as stable bodies of surface liquid water while they were molten. This is the first place such bodies have been found apart from Earth, and Triton is the only icy body known to feature cryolava lakes, although similar cryomagmatic extrusions can be seen on Ariel, Ganymede, Charon, and Titan. [58]

Triton T50i Installation Guide - Taps, Showers, Bathroom Triton T50i Installation Guide - Taps, Showers, Bathroom

While mixolydian, diminished, Lydian dominant and the altered scale are all fairly common choices when playing over 7th chords in various situations, there is one scale that is often overlooked, but that can add a freshness to your lines and take your playing in new directions at the same time. Without a good ear at the helm, you could find yourself musically adrift at sea”: Steve Vai shares his course on ear training for guitar players – the ultimate guide to improving your musicality Because of this relationship, between the tritone scale and the 7b9#11 chord, the tritone scale is often used over a 7alt chord to produce the b9 and #11 alterations, or over a dominant 7th chord where you want to create tension you can later resolve over the same chord, or over the next chord in the progression. The orbital properties of Triton were already determined with high accuracy in the 19th century. It was found to have a retrograde orbit, at a very high angle of inclination to the plane of Neptune's orbit. The first detailed observations of Triton were not made until 1930. Little was known about the satellite until Voyager 2 flew by in 1989. [7]Two large cryolava lakes on Triton, seen west of Leviathan Patera. Combined, they are nearly the size of Kraken Mare on Titan. These features are unusually crater free, indicating they are young and were recently molten. Triton's south polar region is covered by a highly reflective cap of frozen nitrogen and methane sprinkled by impact craters and openings of geysers. Little is known about the north pole because it was on the night side during the Voyager 2 encounter, but it is thought that Triton must also have a north polar ice cap. [44] Two types of mechanisms have been proposed for Triton's capture. To be gravitationally captured by a planet, a passing body must lose sufficient energy to be slowed down to a speed less than that required to escape. [7] An early theory of how Triton may have been slowed was by collision with another object, either one that happened to be passing by Neptune (which is unlikely), or a moon or proto-moon in orbit around Neptune (which is more likely). [7] A more recent hypothesis suggests that, before its capture, Triton was part of a binary system. When this binary encountered Neptune, it interacted in such a way that the binary dissociated, with one portion of the binary expelled, and the other, Triton, becoming bound to Neptune. This event is more likely for more massive companions. [13] This hypothesis is supported by several lines of evidence, including binaries being very common among the large Kuiper belt objects. [29] [30] The event was brief but gentle, saving Triton from collisional disruption. Events like this may have been common during the formation of Neptune, or later when it migrated outward. [13]

T100e Thermostatic Care and Care Plus electric shower

Due to constant erasure and modification by ongoing geological activity, impact craters on Triton's surface are relatively rare. A census of Triton's craters imaged by Voyager 2 found only 179 that were incontestably of impact origin, compared with 835 observed for Uranus's moon Miranda, which has only three percent of Triton's surface area. [70] The largest crater observed on Triton thought to have been created by an impact is a 27-kilometer-diameter (17mi) feature called Mazomba. [70] [71] Although larger craters have been observed, they are generally thought to be volcanic. [70] All the geysers observed were located between 50° and 57°S, the part of Triton's surface close to the subsolar point. This indicates that solar heating, although very weak at Triton's great distance from the Sun, plays a crucial role. It is thought that the surface of Triton probably consists of a translucent layer of frozen nitrogen overlying a darker substrate, which creates a kind of "solid greenhouse effect". Solar radiation passes through the thin surface ice sheet, slowly heating and vaporizing subsurface nitrogen until enough gas pressure accumulates for it to erupt through the crust. [7] [46] A temperature increase of just 4 K above the ambient surface temperature of 37K could drive eruptions to the heights observed. [59] Although commonly termed "cryovolcanic", this nitrogen plume activity is distinct from Triton's larger-scale cryovolcanic eruptions, as well as volcanic processes on other worlds, which are powered by internal heat. CO 2 geysers on Mars are thought to erupt from its south polar cap each spring in the same way as Triton's geysers. [62]Close up of the volcanic province of Leviathan Patera, the caldera in the center of the image. Several pit chains extend radially from the caldera to the right of the image, while the smaller of the two cryolava lakes is seen to the upper left. Just off-screen to the lower left is a fault zone aligned radially with the caldera, indicating a close connection between the tectonics and volcanology of this geologic unit. In 1997, observations from Earth were made of Triton's limb as it passed in front of stars. These observations indicated the presence of a denser atmosphere than was deduced from Voyager 2 data. [48] Other observations have shown an increase in temperature by 5% from 1989 to 1998. [49] These observations indicated Triton was approaching an unusually warm southern hemisphere summer season that happens only once every few hundred years. Theories for this warming include a change of frost patterns on Triton's surface and a change in ice albedo, which would allow more heat to be absorbed. [50] Another theory argues that temperature changes are a result of the deposition of dark, red material from geological processes. Because Triton's Bond albedo is among the highest in the Solar System, it is sensitive to small variations in spectral albedo. [51] Surface features [ edit ] Interpretative geomorphological map of Triton The tritone scale has the intervals, Root-b2-3-b5-5-b7, so all of those juicy notes we saw in the C7b9#11 chord in the first bar of the example. Now that you know how to build a tritone scale, R-b2-3-b5-5-b7, let’s take a look at a few common fingerings for this scale on the guitar.

Triton (moon) - Wikipedia Triton (moon) - Wikipedia

Triton is the seventh-largest moon and sixteenth-largest object in the Solar System and is modestly larger than the dwarf planets Pluto and Eris. It is also the largest retrograde moon in the solar system. It comprises more than 99.5% of all the mass known to orbit Neptune, including the planet's rings and thirteen other known moons, [j] and is also more massive than all known moons in the Solar System smaller than itself combined. [k] Also, with a diameter 5.5% that of Neptune, it is the largest moon of a gas giant relative to its planet in terms of diameter, although Titan is bigger relative to Saturn in terms of mass (the ratio of Triton's mass to that of Neptune is approximately 1:4788). It has a radius, density (2.061 g/cm 3), temperature and chemical composition similar to that of Pluto. [33] Triton's western hemisphere consists of a strange series of fissures and depressions known as "cantaloupe terrain" because it resembles the skin of a cantaloupe melon. Although it has few craters, it is thought that this is the oldest terrain on Triton. [68] It probably covers much of Triton's western half. [7] Triton was discovered by British astronomer William Lassell on October 10, 1846, [17] just 17days after the discovery of Neptune. When John Herschel received news of Neptune's discovery, he wrote to Lassell suggesting he search for possible moons. Lassell discovered Triton eight days later. [17] [18] Lassell also claimed for a period [h] to have discovered rings. [19] Although Neptune was later confirmed to have rings, they are so faint and dark that it is not plausible he saw them. A brewer by trade, Lassell spotted Triton with his self-built 61cm (24in) aperture metal mirror reflecting telescope (also known as the "two-foot" reflector). [20] This telescope was donated to the Royal Observatory, Greenwich in the 1880s, but was eventually dismantled. [20]

Before the flyby of Voyager 2, astronomers suspected that Triton might have liquid nitrogen seas and a nitrogen/methane atmosphere with a density as much as 30% that of Earth. Like the famous overestimates of the atmospheric density of Mars, this proved incorrect. As with Mars, a denser atmosphere is postulated for its early history. [72] Triton has a tenuous nitrogen atmosphere, with trace amounts of carbon monoxide and small amounts of methane near its surface. [11] [42] [43] Like Pluto's atmosphere, the atmosphere of Triton is thought to have resulted from the evaporation of nitrogen from its surface. [27] Its surface temperature is at least 35.6K (−237.6°C) because Triton's nitrogen ice is in the warmer, hexagonal crystalline state, and the phase transition between hexagonal and cubic nitrogen ice occurs at that temperature. [44] An upper limit in the low 40s (K) can be set from vapor pressure equilibrium with nitrogen gas in Triton's atmosphere. [45] This is colder than Pluto's average equilibrium temperature of 44K (−229.2°C). Triton's surface atmospheric pressure is only about 1.4–1.9 Pa (0.014–0.019 mbar). [7] Clouds observed above Triton's limb by Voyager 2. Main article: Atmosphere of Triton Artist's impression of Triton, showing its tenuous atmosphere just over the limb. The few impact craters on Triton are almost all concentrated in the leading hemisphere—that facing the direction of the orbital motion—with the majority concentrated around the equator between 30° and 70° longitude, [70] resulting from material swept up from orbit around Neptune. [54] Because it orbits with one side permanently facing the planet, astronomers expect that Triton should have fewer impacts on its trailing hemisphere, due to impacts on the leading hemisphere being more frequent and more violent. [70] Voyager 2 imaged only 40% of Triton's surface, so this remains uncertain. However, the observed cratering asymmetry exceeds what can be explained based on the impactor populations, and implies a younger surface age for the crater-free regions (≤ 6million years old) than for the cratered regions (≤ 50million years old). [53] Observation and exploration [ edit ] NASA illustration detailing the studies of the proposed Trident mission Neptune (top) and Triton (bottom) three days after flyby of Voyager 2

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment