276°
Posted 20 hours ago

RED5 Round Mini Volcano Lamp - Miniature Novelty Bubble Desk Light

£9.975£19.95Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

Another lesson here is that informal methods of communication such as telephone calls were a valuable means of facilitating timely interaction and the translation of scientific uncertainty one on one to end-users, since they did not technically involve issuing official warning information. Establishing meaning in alert levels Volcanic eruptions are measured using a simple descriptive index known as the Volcano Explosivity Index (VEI) which ranges from zero (non-explosive) to eight (catastrophically explosive). The index combines the amount of material ejected (by volume) with the height of the eruption column and the duration of the eruption. Peterson DW, Tilling RI, Kilburn CRJ, Luongo G (1993) Interactions between sceintists, civil authorities and the public at hazardous volcanoes. In: Active Lavas. UCL Press, London, pp 339–365 For VALS to be effective, assessments conducted by scientists must be relevant to the needs of the key decision makers. The relevance requirement has been found to drive associated demands for timeliness and for simple accessible alert information (Sarkki et al. 2013; Parker and Crona 2012). With reference to VALS, this includes demand for timely simple and accessible alert information, that is usable subject to a range of contingent factors. Timeliness Harris AJ (2015) Forecast communication through the newspaper part 2: perceptions of uncertainty. Bull Volcanol 77(4):30

The development of VALS began in the 1980s, in response to the Mt. St. Helens eruption (USA) in particular. Between June 1980 and October 1986, this volcano continued to erupt in the form of a dome-building phase punctuated frequently by dome explosions (Swanson and Holcomb 1990). This cyclic activity allowed the newly formed Cascades Volcano Observatory (CVO) to develop accurate warnings as far as 3 weeks in advance for 19 of 21 explosions (Bailey and USGS 1983). Increasing confidence for many scientists in their ability to provide precise predictions, this high rate of accuracy provided the impetus to develop a VALS for use at CVO. In 1985, the United Nations Disaster Relief Organisation (UNDRO) published a report on ‘Volcanic Emergency Management’. It features one of the first examples of a VALS, called “stages of alert of volcanic eruption” (UNDRO 1985, p. 54). Each progressive alert level reflects increasing indicators that the volcano is about to erupt and provides an approximate period and a recommended disaster manager response. From this point on, VALS have all followed this linear progression whereby alerts rise with perceived increasing levels of danger. The UNDRO report also offers strong guidance in relation to using public announcements that have been decided prior to any emergency to limit panic in volcanic crises, emphasising the need for the public to be made aware of the arrangements for receiving information. These details vary in each place, region and country, according to the different “political and social structure of the community and the technical means available. It is therefore difficult to lay down any detailed guidelines for public information and warning” (UNDRO 1985, p. 55). The report also highlighted the importance of local context and the need to develop an idealised VALS for countries to adopt or adapt if they required. Possibly, because of the importance of local contingencies, literature on VALS since 1985 has remained limited until the 2000s, with some grey literature written by various volcano observatories, institutions and individuals. Cash et al. ( 2003) drew from more than 30 case studies to confirm that the use of institutions or procedures that span this interface between scientific and decision-making communities have been necessary to establish the usability and potential influence of scientific knowledge. The effective use, value and deployment of information across this interface depend on three interlinked criteria: the scientific credibility of the information, its relevance to the needs of stakeholders and the legitimacy of both information and the processes that produced it. Translation of scientific concepts and terminology into accessible everyday language is required to ensure that everyone involved understands why and how information is scientifically credible (Cash et al. 2003). Multi-valent communication among all involved is required to ensure that all involved, including scientific communities, fully understand relevance to stakeholder needs. The legitimacy of the information relies on the perception that the interests and influences of all those involved, including both scientific and end user groups, are included and balanced; legitimacy relies on transparency, and is enhanced by mediation arrangements. Beaven S, Wilson T, Johnston L, Johnston D, Smith R (2017) Role of boundary organization after a disaster: New Zealand’s natural hazards research platform and the 2010-2011 Canterbury earthquake sequence. Nat Hazards Rev 18(2):05016003In summary, VALS differ greatly between countries, with some including only descriptions of the level of physical phenomena (e.g. differing criteria of volcanic unrest and size of eruption), whilst others include hazards, potential impacts and risk mitigation actions (including evacuations). Some include forecasting, whilst others do not. Designing new VALS and evaluating or revising existing systems requires an understanding of these options. These processes benefit from being able to draw upon the experiences of others in similar situations, and the related theory of risk (and crisis) communication. With increasing levels of technology and communications methods (such as social networking), it is imperative that VALS used by volcano observatories around the world retain their credibility and trust, and work to serve legal, political and local community requirements. This requires further investigation in understanding how uncertainties are conveyed and represented within the VALS and how these are perceived by key decision makers, as discussed by Fearnley ( 2013) and Fearnley et al. ( 2017). It is also important to note that the original intent of VALS may vary in different countries and that intent is very different from the reality of the task, resulting in VALS evolving in different ways over the years, in part to deal with changing technologies, growing and more complex societies and differing legal and institutional remits and protocols. Every volcano has a diverse range of hazards in different spatial and temporal combinations, making the individual behaviour of each unique. This can make understanding the activity and issuing a warning for a volcano alert a highly complex and context-specific process. Many hazards can occur within close proximity of a volcano, whether it is active or not, in different locations (geographically), and at different times. Most are excluded from the VALS, which relates only to the occurrence of volcanic/eruptive unrest/activity, and must apply to every volcano. Many scientists stated that VALS should convey information about all volcanic hazards, whether they proximal to the volcano, i.e. volcano-centric, or distal. Some expressed the view that a warning can only be truly issued after the event has begun (CVO collaborator 2), which means that the only way to measure if a lahar has developed, or where an ash cloud is moving, is to monitor them individually. A number of the observatories have developed independent alert level systems tailored to the nature of a range of these hazards, including volcanic gases (in particular seen at HVO), lahars (CVO), volcanic ash clouds, volcanic ashfall (AVO) and hydrothermal activity (YVO). The unique individual behaviour of a volcano, each with differing hazards in differing spatial and temporal relations makes monitoring, understanding the activity and issuing a warning for a volcano alert highly complex processes.

Newhall CG, Punongbayan R (eds) (1996) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines (p 1126). Philippine Institute of Volcanology and Seismology, Quezon City Our rest of world delivery region includes the continents of Asia, South America, Australia/Oceania & Africa Stirling A (2007) Risk, precaution and science: towards a more constructive policy debate: talking point on the precautionary principle. EMBO Rep 8(4):309–315 Fujimura JH (1987) Constructing ‘do-able’ problems in cancer research: articulating alignment. Soc Stud Sci 17(2):257–293

MOST POPULAR

Tilling R (1989) Volcanic hazards and the mitigation: progress and problems. Rev Geophys 27:237–269 Shield volcanoes have a broad, flattened dome-like shape created by layers of hot and runny lava flowing over its surface and cooling. When magma is very hot and runny, gases can escape easily. Eruptions of this type of magma are gentle, with large amounts of magma reaching the surface to form vast lava flows. An] alert level system is a shorthand, is the vehicle, it is the excuse to get into communications and dialogue, that gives you a justification and purpose […] that provides you the entry into having a discussion with very busy people who are otherwise occupied with other duties they have (VHP manager 4).

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment